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Summary—The paper considers skin panels of multi-web wings under longitudinal,
thermal and compressive strain.

Non-uniformity of the stress in the edge region appears to have a negligible
effect on the buckling mode. This yields a straightforward method for establishing
buckling loads if the solution for uniform stress is available.

There appears to be a negligible difference between the post-buckling behaviour
in the thermal case and the behaviour at constant temperature for the practical
range of ratios between thermal and buckling strain; the wave pattern is almost
unaffected by thermal strain. Hence the relation between load increments and edge
displacement increments after the onset of buckling is equal for thermal and
isothermal conditions.

For panels subjected to thermal and compressive strain, data are given on load,
wave depth, wavelength and stresses as functions of edge strain. Data on the
isothermal tension field are also applicable to thermal conditions.

NOTATION

APARTfrom some notations of local importance, which are defined in
the text, this report contains the following notations of more general
interest.

a ---panellength
b =panel width
f=wave depth
k=buckling coefficient for thermal stress distribution

k0=buckling coefficient for uniform stress
t=plate thickness

p=7rxIL
q=v-ylflb

u, v=displacements of the middle surface of the plate parallel to
the x- and y-axes

w =deflection of the plate
x, y=longitudinal and lateral co-ordinates
Ai=coefficients of Eq. (4.8) depending on the wave pattern

(see 4.7)
B=Et3[12(1-v2)]-1,bending stiffness of the plate
D=(bIL)2, wavelength parameter
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-rr-
F 4- (f b)2, wave depth parameter

I, —half wave length
P=longitudinal compressive load
P =compressive load for constant temperature
T=local temperature, function of y

II1(y)—cross shape of the wave pattern, defined by Eq. (4.5)
Xi, Yi, Z=functions of T,.€0, given in Table IV and Figs. 6 and 7

a=coefficient of thermal expansion
fl=ratio between the width of the double curved edge region

and b
€ =compressive strain of the edge

co =77.2(0)2[3
( 1

_v2)] -

€7,( 0,T,/3)=function of temperature and wave shape, defined by Eq.
(4.9)

—

E =apparent strain, defined by Eq. (4.10), strain for constant
temperature

ax,ay=normal stresses
Œa=equivalent stress, defined by (4.21)
T—shear stress

T)a, =av er age thermal strain in the panel.
b as suffix denotes the onset of buckling.

1. INTRODUCTION

The structure of supersonic aircraft is critically loaded as far as thermal
stresses are considered during the so-called transient conditions, when the
aircraft is accelerated. Kinetic heating of the skin while the interior
structure is still at a lower temperature level causes compressive stresses
in the skin and tensile stresses in the internal structure. The temperature
of thc skin is not constant or nearly constant. Those places where the skin
is in contact with the interior structure act as heat sinks and have a
considerably lower temperature than the skin at some distance from the
oint.

The problem investigated in this paper refers to the multi-web wing
structure, which is very common for supersonic aircraft. The type of
temperature distribution occurring in the skin of such wings is illustrated
by Fig. 1. Since the longitudinal strain of the skin panel is constant through-
out the plate due to the compatibility of strains and because the resultant
load on the wing section should vanish (leaving the aerodynamic loads
for the time being out of consideration) compressive stresses occur in the
centre part of the panels and tensile stresses in the edge regions of the panel
and in the interior structure. The magnitude of these stresses depends on
the longitudinal stiffness of the longitudinal webs of the wing. Since this

', buckling strain for constant temperature
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FIG. 1. Multi-web wing. Temperature distribution and thermal stresses in

transient condition.

is a measure to restrict the thermal compressive stresses of the skin it is
advantageous to design the webs in such a manner that their longitudinal
stiffness is small. Corrugated webs are very useful in this respect. Though
the magnitude of the thermal stresses is reduced by such measures the
stress differences within an individual panel are not affected. The longi-
tudinal stresses in a panel are far from homogeneous (see Fig. 1) and this
fact gives rise to a type of buckling problem, which did not exist for
subsonic aircraft.

The buckling problem to be investigated is not the problem of the plate
merely loaded by thermal stresses, the average of which over the plate
width is near zero. To the thermal stresses are added the stresses imposed
by the aerodynamic load of the aircraft. These latter stresses are practically
constant over the width of the panel : they consist mainly of compressive
(or tensile) stresses in the longitudinal direction.

Therefore the buckling problem to be considered is that of a panel,
the length of which is a great multiple of its width, supported along its
edges and loaded longitudinally by compressive stresses which are maximal
in the centre of the panel and drop off to a lower value at the edges. This
stress distribution is characterized by a steep gradient at the edge and an
almost constant part in the centre region of the panel. An example illus-
trating the temperature and the corresponding stress distribution has been
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given by Hoff (' ). Since the adjacent panels will have about the same size
and will be loaded in about the same manner the interaction of adjoining
panels can be supposed to be negligible. From this point of view the edges
of the panel can be considered to be simply supported. The possibilitv
exists that the webs will present some restraint against panel buckling. In
this investigation, however, such restraint is being neglected.

'The stability of plates under non-uniform stress of this type has been
investigated by Hoff (' ). He gives an evaluation for the stress distribution

-6,1 cosZny b.  In ref. 2 the case cr0-;-a1sinTry, b is evaluated and some

other distributions characterized by a large stress gradient at the edges
were investigated by means of a so-called "correction method" which
will be recapitulated in Section 2 of this paper. The basic idea of this
method suggests the approach to the problem of the post-buckling
behaviour of thermally strained plates, which is the main subject of this
paper.

Surface waviness of the airfoil in normal flight is without doubt
prohibitive since it increases its drag. However, increased drag occurring
only during a small part of the total flight time might well be acceptable
as a compromise between considerations on aerodynamic cleanness and
structural weight. So for instance might buckling be accepted under the
combined action of normal flight loads and thermal stresses during the
acceleration period, and even more if manoeuvring loads are added.

The requirement that buckling should not occur in certain conditions
of flight creates the need for methods to establish buckling loads. The
allowability of buckling in other conditions of flight creates the need for
knowledge on post-buckling behaviour. Information is required on the
following subjects:

The relation between the deformation of the panel and its load. This
information is needed for the stress analysis of the aircraft.

The stiffness of the panel in its post-buckling state with respect to
small variations of the deformation.
This information is needed for investigations on the possibility of
flutter.

The maximal stresses in the buckled panel.
After having sustained large thermal and/or aerodynamic load, which
causes buckling, the skin panel should return in its undeflected
position. Therefore the maximal stresses occurring with buckling
should not cause permanent deformation and their magnitude should
be known.

Quantitative data on the shape of the buckled panel.
This information will be required by the aerodynamicist, since

surface waviness should be kept below certain limits in order to avoid
turbulence of such a violence that it would be detrimental to the
structure.
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This paper supplies information on these four items for the simply
supported panel under thermal load and longitudinal compression, on
items 1, 2 and 4 for the rigidly restrained panel under thermal load and
longitudinal compression. Finally it deals with simply supported panels
under thermal load and the combined action of longitudinal and lateral
compression and shear. In this respect available information enables us to
answer questions with respect to items 1, 2 and 3.

2. BUCKLING OF SKIN PANELS

The differential equation for buckling of plates of uniform thickness is(3)

	

a'w a, a2w,
D(w) BV 4w — t (a, 	

u,
 I-- 27 	 -1-ay-) -- 0, (2.1)

	

ax2 axay ay2
where

	

a4( a4( )
+

a4( )
v4 2  \ 


ax4 ax2ay2
( )    

ay4
This equation has, in the case of the rectangular plate supported along

its edges and uniformly loaded in longitudinal compression, the very
simple solution

w =f sin 7ryi'b sin 7rx L. (2.2)
Under thermal conditions the longitudinal stress 0-, varies across the

plate width; one of the coefficients of the differential Eq. (2.1) is no
longer constant and the problem is mathematically more complex. Then
the exact solution can be obtained by infinite series(1,2). To this end 0-,
is expanded in Fourier-series, in ref. 1 as

-axt-S0(1+E pp  cos  pry lb)
in ref. 2 as

p=2,4-,6, (2.3a)

--axt = S0(1 + 1],up sinpny/b)

and w is expanded in Fourier-series as

w=-(Efn, sin mry lb) sin lrxIL

p =1,3,5,

n=1,3,5

(2.3b)

(2.4)
This exact solution becomes an approximate solution when the number

of terms considered in (2.4) is restricted. Then the best approximation
for the coefficientsfn of the finite series are obtained by the application
of the Ritz-Galerkin method(2).

When the approximation for the buckling mode is denoted as
-w=Ef„w„(x,y) (2.5)

the Ritz-Galerkin-equations replacing Eq. (2.1) are
a b

f f D(i-v)wjclxdy =0, (2.6)
0 0

where w5 is any of the functions composing the finite series (2.5).
Equations (2.6) are linear in the unknown coefficientsfit; they define

a characteristic value problem. Its solution is readily obtained by matrix
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iteration, which yields with the vector f the characteristic value 1  S,.

Since usually one is interested only in the first buckling load, which corres-
ponds to the largest characteristic value, the evaluation of the Eqs. (2.6)
need not be continued after having obtained the first characteristic value.

Reference 2 gives as an example the solution for the load

axt=So(1-15/8 sin 7ry/b-5/24 sin 377-y/b).

The stress ax in this case is distinctly non-uniform ; the edges are loaded
in tension, whereas the centre is loaded in compression ; the ratio of both
stresses is 1.5. The series (2.5) include only three terms. Starting the
iteration with f1=-1, f3=0, f5=0 one obtains after one iteration step
f1=1, f,= — 0.0131, f,= —0.0009 and after the second one
f,== —0.0133, f,— —0.0009.

The remarkable feature emanating from this example is that although
the load is far from uniform the buckling mode departs only slightly from
that for uniform load. Therefore the buckling mode for uniform load is a
reasonable approximation for the mode pertaining to non-uniform loads
of the type prevailing in kinetic heated skin panels. This conclusion is
reflected in the buckling stresses. The buckling load obtained when only
the first term of the series (2.4) is maintained is only 0.6" in error, against
the buckling load obtained by matrix iteration on the basis of three terms
of the series (2.4).

These conclusions have a simple physical explanation. The energy
required for distorting the plate into its buckling mode is supplied by
the external load at the edges. The external work is(3):

a  b

A, — f f tax(1  2+ 2T  aw  ' °IV Cr y law) 2 dxdy, (2.7)
ax ax kay

o o

where for sake of generality T and Uyare included, though they were zero
in the case considered so far.

At the edges the panel is supported, hence the deflection w vanishes at
the edge and is very small near the edge in those parts of the panel where
the stress axdeparts sensibly from uniformity. Since (2.7) is quadratic
in w and aw/ax is small near the edge the contribution of axto the external
work is small as far as the edge regions are concerned. Therefore the pecu-
liarity of the distribution of axwill affect the external work and conse-
quently the strain energy of the plate only slightly. The energy is only
slightly affected by the non-uniformity of the stresses and consequently
the buckling mode must be close to that for uniform stresses.

This conclusion suggests a straightforward approximation for the type
of buckling problems concerned.

Let us suppose that the buckling problem for uniform stress distribution
ax=—so,Gry-=—C13.0, T= — G2S0 has been solved, that its mode is  w(x,y)

and the buckling load is .50 --k0 i r2Bib2t,where k, is the buckling coefficient.
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Then the external work is, according to Eq. (2.7),
a b

Aeo= f{rW)2 2C2 aw • aw C (aw
) 2

dxdy • k0r2 Blb2 (2.8)
ax ax ay ay

0 0
The non-uniform stress distribution which yields buckling is

0-x=—s+s-, cry=—C1s,T = —C2s,
where s  is constant throughout the plate and is equal to  —ax  in the centre
of the panel, and -s represents the non-uniformity of  a,  in the vicinity of
the edges (Fig. 2). The buckling coefficient is defined by

s=k7r2B1b2t.

5-x

FIG. 2. Distribution of thermal stresses over panel width.

In this thermal case the external work is according to Eq. (2.7)
a b —

S aw 2
A, = f f [(1 — -s)(—ax 2C2w • Lw Ci (.=) dxdy X

	

ax ay ay
0

k7r2B1b2 (2.9)

On the assumption that the modes may be considered to be equal for
uniform stresses and non-uniform stresses it follows that the elastic
energies in both cases are equal and consequently that the external work
in these cases is equal : Ae = Aeo.

Equating (2.8) and (2.9) yields
a b

k—k, i'aw  2 + 26,2 aw al()
(LID

h
) dxdy

•j j jax) ax ay ay
0 0

a b

=

o o

;IS (TaWx)  2dxdy (2.10)

1 _
Since k,,w(x,y)  and -s s(y)  are known, equation (2.10) yields the buckling

coefficient k.

13
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Equation (2.1( ) defines the correction which must be applied to  k
for uniform load to find  k  for non-uniform load. Therefore the method
might be called the "correction method".

This method has been applied in ref. 2 to some distributions of thermal
stress with steep gradients at the edges.

3. POST-BUCKLING BEHAVIOUR OF SKIN PANELS

The differential equations governing the post-buckling behaviour of
plates are non-linear in the deflections. This augments the difficulty,
already present due to anisothermic conditions, of obtaining exact solutions
and one is compelled to use approximative methods of solution.

The method here applied is the Raleigh-Ritz method. Thus approxi-
mations for the three displacement components are assumed, which
contain a limited number of parameters. These parameters are chosen
in such a way that strain energy is minimal as a function of the parameters.
Since the strain energy established in this way is an approximation of the
actual minimum of strain energy its amount is somewhat too large.
Consequently, the external load corresponding to this energy is more or
less an over-estimation of the actual load.

The method has been applied by Koiter in his work on the iso-thermal
case of plates loaded in longitudinal compression, the "effective-width"
problem(4), and on plates loaded simultaneously by longitudinal and
lateral compression and shear(5). Experimental evidence exists to show
that the over-estimation inherent in the approximation is negligible.

In the investigation which follows, the line of thought of ref. 4 is applied
to the longitudinally-compressed simply-supported plate with non-
homogeneous and with respect to the centreline symmetrical temperature
distribution.

The adaptation of the general equations to the case of non-homogeneous
temperature precedes.

The relations between the membrane strains, the membrane stresses
and temperature are

EEx = az —  vgy + EaT

Eel/ = Cly — VO" x EaT  (3.1)
Ey -----= 2(1 -1 v)r

The relation between the curvatures and the moments are independent
of temperature.

a2w

	

B(1 — v2) —ax2 —  vMy

a2w
B(1 — v2) — ——

	

ay2 •

a2w

	

B(1 — v2) ,cx,  — (1 +  v)/1/xy
Y

(3.2)
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Since the Raleigh–Ritz method is an energy method we have to establish
the strain energy. The strain energy per unit of area of the plate and over
its full thickness, is

a2w a2w

221/
a2w 1

-----I, f t (CfxEx -i UyEy--rry ' i- Mx  i MyA (3.3)
a 1 ax2 ay2 xy

axayj '


Substitution of (3.1) and (3.2) into (3.3) yields

Et 1

A — 1(—0 Ex + €y)2 —  2 (1 — I') (ExEY— 4 72) -

12
12 t

a2w )[ (a2W

- 2

2

(1

(1

+ v) aT (E x + Ey)+ 2 (1 +
(a2wa2w a2w21-

v) (aT)2 +

(3.4)
ax2ay2/

1
v
)ax2ay2 axay)

Equation (3.4) expresses the strain energy as a function of the displacement
components u, v, w, by means of the relations between displacements and
strains valid for finite deflections w

au aw)2
EX = (—ax aX

aV (aw)  2
(3.5)

aU ay aw aw
Y ay + ax ax • ay

4. POST-BUCKLING BEHAVIOUR UNDER


LONGITUDINAL COMPRESSION

4.1  The Assumptions on the Displacements with Simply Supported Edges
We have already found that the buckling mode in the isothermal case

is a very good approximation for the buckling mode under thermal
conditions. This applies to the mode at the onset of buckling. If the
longitudinal compression increases the deflections become finite. Whereas
infinitesimal deflections correspond to the buckling mode, finite deflections
may be incongruent to the buckling mode, though it can be expected that
the deviation from exact congruency will be slight in the first post-buckling
stage. Therefore, though it is an approximation, the function

w = f  sin  iTylb  sin  Trxj,

is appropriate to describe the deflections in the isothermal case during
the first post-buckling stage. Then, since this function represents a close
approximation of the buckling mode in the thermal case, it will do as well
as an approximation for the finite deflections in this first stage.

In the more advanced post-buckling stage, when the wave depth
increases the wave pattern tends to become a developable surface).
This is a consequence of the fact that the membrane strain ("extensional")
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energy tends to become very large at large wave amplitudes. Then the
"wash-board" pattern of the developable surface opens the possibility
to obtain large de flections and nevertheless small membrane stresses.

In the edge regions the developable surface cannot be maintained since
the deflection must vanish at the edges. Therefore the edge regions cannot
be developable.

In accordance with this concept Cox(7) introduced a wave pattern

consisting of a developable part over a width (1—f3)bin the centre of the

plate and a double curved part over a width -181,along the edges:

ipb < (1 — b : w = f  sin 7T xi' L (4.1a)

0 <y <113b : w = f  sin  7r 303b  sin 7rxIL (4.1b)

This assumption for the deflection has been adopted by Koiter(4).
Together with consistent assumptions on  u  and v it yields a good approxi-
mation for the isothermal post-buckling behaviour. For the reasons
already discussed it may then be applied with confidence in the thermal
case.

The assumptions for  u  and v used in ref. 4 are

ipb < (1 — b : u = — Ex —  sin 27r ; v = v, (y) (4.2a)

7r f2

O<y <f3b: u = — Ex — sin2 77 y f3b  sin 27r—x
8 L

v (y) sin 27ryl f3b sin2 7T -x

7r f2

These functions satisfy the principle that the membrane stresses have to
be small. They are such that y=0 throughout, Ex is a function of y only.
The functions v0(y) and v1(y) follow from the condition that the average
of Cry over  x  vanishes.

f crydx = 0 (4.3)
o

Adopting the same characteristics for the membrane strains in the
thermal case we obtain the same functions  u  and y, and the strains are
expressed by the same formulae as those for the isothermal case.

The displacements, and consequently the strains, are functions of  x  and
y and of the quantities  f, L, [3  and E.

For y = 0 (4.1b) (4.2b) yield

aw au
ax ax

whereafter (3.5) yields

(4.2b)

(cx)y=o = E.
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Therefore c is the compressive strain at the edge. The problem to be solved
now is to establish for a given E the corresponding wave pattern para-
meters  f, L  and /3, the wave depth, the half wavelength and the width of
the double curved edge region. These three parameters are obtained from
the condition that the strain energy is minimal.

4.2 Minimal Strain Energy

The formula for the strain energy per unit of area (3.4) departs from
the expression valid in the isothermal case only by the addition of terms
containing  aT.  If we denote the strain energy in the isothermal case
(T = 0) by  A,  the strain energy in the thermal case is

A = A0 +1
Et   {

aT  (Ex Ey) (aT)2}
 — v

The total strain energy per half wavelength  L  is, since  etT  is a function
ofy only and Ey can be eliminated by using Eq. (4.3)

Lb

V

	

S = f f A dxdy = So — Et f dy (aT f exdx) — EtL f (aT)2dy
— v

o o

Introducing the average thermal strain

1
(CX T)av = -bf aTdy

and eliminating  ex  by means of (3.5) we obtain since  uL—ito= — EL

(4.4)

1
S S, EtbL [E (a T)

2bL f dy
{aT f (aaw,r) 2dx

V

1--Vf  7)2dyld
O

If w is given by
w = fW(y)  sin  7r xIL, (4.5)

which complies with (4.1) but applies as well to other assumptions on the
wave pattern or to other edge conditions, and with the non-dimensional
parameters  F  and  1)  used in ref. 4, which replace  f  and  L,  the strain
energy takes the form

b b

r 1s =so+ EtbL { E (aT)  av — 1,7) f  CY711'2 (y)d y/b  
Al—

v
v » 7)  2d ylb f '

o o
(4.6)

According to ref. 4 (Eq. 31.2) the strain energy for simply supported
and restrained edges takes the form
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so EthL - (2 — EH) p2[(1 12 7 A, # -1) + 73-d

+

where Et, is the buckling strain with simply supported edges and the
coefficients Ai depend on the functions for u,  v and w. For u, v, zodefined

by (4.1) (4.2) these coefficients are

1
A, — 1, A, = 5/8, A:„ = 0,  A, = = 0.1374,

8 (1— v2)

1 1
A 4 = 4 ,245 = A, A6 = (4.7)

Since A, has particular importance for this investigation its general
formula is given

2  — A, = 2f 11'2 (y) dy/b.

0

Then the average strain energy per unit of length of the plate is the
following function of the compressive overall strain E the thermal strain

T and the parameters F, D, p.

lEtb[E2 + 2E(AT) av — FD (2 — A113) {E HET (aT,P)) +

, D A,
-1- F2 {(1 — A ,g) D2 + + - +

D A, 2v
+ E0F — A D2 + A, + 	 f (7)2(1 ylb]  (4.8)

g p3 v
o

where

E 13) =
2 


f aT14.Y2 (y) d y/b
— Aig

f 7112 (y) d y:b : f 11.2 (y) dy (4.9)

Since at a given edge strain E the parameters F, D, [3have to be such that

strain energy is minimal the derivatives of $11,with respect to F, D and /3
should vanish.



Behaviour of Thermally Loaded Skin Panels 199

If we replace in the equations the edge strain Eby the "apparent strain"
defined by

—E = E (4.10)

the equations from which  F, D  and 13can be solved are

D(lEtb)-1asIL = (2 — A1,6) 2F (1 AA D2 + — + =1 +

	

aF g31
D A,

+ co{(i — A4g) D2 + A5—+-1 = 0 (4.11a)
/3 P3

a qEtbF)-1  S=
(2 — A1p) 21F {2 (1 — ,13)D + -7d +ap

A,
+ E„{(1 — 2A 418) D + 757} = 0 (4.11b)

a
(1EtbF)-1a S IL = D { 211—(2 —

er
—} + FA,D2 + +ag al3 g2

D 3A
+ 3 Al Eo{A 4D2 + As— + 0. (4.11.0g4 g g4

Let us suppose that we have solved for a given; the parameters  F, D, fi
fromEqs. (4.11), then we can establish the longitudinal compressive loadP.

The strain energy is produced by  P  over the displacement Ea. Therefore
p == 1 d iS  a\ a SI", a571, dF a dD aSIL  dfi

	

a dE • a, aF dE at, • dE ag dE.


According to Eqs. (4.11) this reduces to

aS
P = — Etb CE —FD (1 — 1,41/3) + (ce T)av} (4.12)

a,

4.3 Evaluation of the Solution
Equations (4.11a and b) are identical to those for the isothermal case

at the edge strain —E.

In the isothermal case  p  proves to be constant and equal to unity in
the range of strain ratios 1 <i/E, <4. In this range  le is not a parameter of
the wave pattern, hence (4.11c) cancels and  F  and  D  follow from (4.11a
andb). Consequently  F  and  D  are equal in the thermal and the isothermal
case for equal apparent strain —E. This yields a very simple relation between
the load  P  in the thermal case and the load P in the isothermal case.

Since

we find

further

P = Etb[; — FD (1 — AA]

P = P + Etb[ET(AT)— 'flay]

e = E + ET(cxT).

(4.13a)

(4.13b)



200 A. VAN DER NEUT

—
Et b Etb

/31) 	 Pb

Etb Etb

Eb
ET— (CET )av=-1/b0f ŒT Cos 2 IC dy

Lb

FIG. 3. "Arad P vs. edge strain c for thermal conditions. P,  "i applies to

constant temperature.

This result has a simple graphical representation (Fig. 3). If the
curve for the isothermal case is known, the P-E curve for the thermal case
is obtained bv shifting the P-axis in the direction of the .-axis over the
distance ET(a.7') and moving the -i-axis in the direction of the P-axisover
the distance

Etb {Er (IXT) — (aT) avl.

The graphical representation has among its characteristics that the
representation of the buckling loads Pb and Pb of the isothermal and
thermal case coincide. This yields another formulation of the corres-
pondence of post-buckling behaviour in both cases.

If Pb and Pb are the buckling loads in the isothermal and the thermal
case respectively, and -Et),Eb are the corresponding edge strains, the load
increments P Pb and  P — Pb  are equal for equal strain increments_ _
E—Eband E—Eb, and the wave patterns are equal.

Thus far this conclusion holds only in the primary post-buckling range
where V-1. In the more advanced stage the differences of F, D, g have to
be taken into account.

Equations (4.11) and (4.12) where  Ai  is given by (4.7) can be written as

15
— = 2 (1 — c2) (1 — —8g) D (D2,33 	 ID + 


02 —  /3) 22/3 (2 — [3)
F E

= (1 — v2) {(2 — /3) D2g3 —1} .

(4.14a)

(4.14b)

6 — 5/3(1 v2) /33D4 +
6 — 5/3 (1 1 —

8  g  28 I 	 D2 -1
_ p

1—p d 3
(4.14c)

t (2 —13)132+ P)cTi9 (ET/Eo) D  8-j4 — 0

CT
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P  = — D (
7

1 —
2

+
Etbe,  Eo E 


aT Eg,
— — ,

60 av €o
(4.15)

where

2 ciT
(2 —13) —d(e / 0)

L —
= — f aZ-rn sin rici.7)

d/3 P fo av € 0
o

ß  1 f aT
+

2 —0
+ cos,71)

o

=  217 y/flb.

These equations are evaluated in the simplest way by considering# to be

the independent variable. Then D can be solved from (4.14c), whereafter

E0, Plc,  and E/E,can be established with Eqs. (4.14a, b) (4.15) and

(4.10).

Obviously, the P-E-relation so established depends onaT(y)le,,. Likewise,
as in the buckling problem, temperature variations have a smaller effect
when they occur close to the edges. When studying the thermal effects
on post-buckling behaviour by means of numerical examples such tem-
perature distribution should be assumed which yields a pronounced
thermal effect; therefore the temperature is assumed to vary across a large
percentage of the plate width. In this respect the distribution,

T=T, sin 7r ylb  (4.16)

is appropriate. Usually in those stages of flight in which the temperature
difference between the centre and the edges of the wing panel are greatest,
the temperature gradient near the edges is larger than according to a
sine-law, yielding more uniformity of thermal strain in the centre region.
Therefore the distribution (4.16) is on the conservative side.

In order to get some idea of the thermal to buckling strain ratios
(a TO/e, to be expected in wing structures the following considerations are
given.

We consider an aluminium-alloy structure, where 06=13.3 ><10-6 °C-1,
E=6 x 103kg/min' at elevated temperature, the ultimate compressive
strength be cru =40 kg/mm2. The temperature T, is assumed to be 150°C,
therefore (17'1=2.10-3. Since the skin of supersonic wings should not
buckle in normal (unaccelerated) flight the buckling stress uo at constant
temperature will not be less than 10 kg/mm2. Hence (aT1)IE,<1.2.

Therefore when evaluating the range fl<1 we should consider (a TOI
1.0. We will however pay some attention as well to the ratios 2 and 3.

Table I gives the relation between P and E following from (4.14),
(4.15) and (4.16). We will call this solution the exact solution and we will
compare it with an approximate solution  P,(E).  This approximation is
obtained under the assumption that the equality Pi —Pb=P —Pb for
—Eb E---Eb holds not only in the range where f3=1 but as well in the

rangewhere fl<1.
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The corresponding values  P,Ttbe,  and E: E,  are obtained from_
71/Eth€0 and E/ E„ for  T =0 by moving the 75.Ethe,  axis over the distance

E0 and the Elf° axis over the distance

ET/160- (17 7 E0)av =2/37 (04T ) /co.

TABLE 1


P-c-relation for the advanced post-buckling range

aTi 0 1•0

D
7.


-
co

P
 D

e


60

P Pi
1
Pi-P

X 100
Etbe, Etbe0 Etbe0 P

1.773 3.985 2.25 1.865 3.75 2.28 2.26 -1
2-194 5.82 2-88 2.285 5.73 2.93 2.90 -1
2.816 8.87 3.77 2.909 8.98 3.88 3.82 -1-5
3 81 14.53 5.21 3.92 14.82 5.30 5.20 -1-9
5 615 26.51 7.60 5.70 26.96 7-74 7.69 -0.7
9.35 57.5 12.72 9.43 58.44 12.83 12.76 -0.6

1971. 177 26.1 1978. 178.6 26.4 26.2 -1.0

a T,
/1




60




P1-P
X 100

co Etbe0 Etbe, p




1 1934. 3.39 2-25 2.25 0
2.0 0.875 2.357 5.51 2.93 2.88 -2




0.75 2.985 8.95 3.92 3.82 -2.8
3.0 0.75 3.061 8.96 4.00 3.81 -4.8

Table 1 gives the comparison of this approximation with the exact
solution. It appears that the error is always on the conservative side. It
passes through a maximum which increases with increasing (a TO1c0.  For
(otT,)1c0=1.0  which is for aluminium structures the severest case to be
considered the maximum error does not exceed 2"„. However, this maxi-
mum is reached at €/eo>10, therefore when the edge stress is more than
10 times buckling stress. This edge stress is not realistic, since we had
assumed that the ratio of ultimate strength and buckling stress would not
exceed 4. With E Co = 4 the error is about

If we cancel the condition that the skin should not buckle in continuous

flight and if we allow for buckling stresses down to 4 kg/mm2, keeping

the ultimate strength at 40 kg/mm2 and the temperature Ti at 150 C

we obtain the errors given in Table 2. These are estimated figures derived

from Table 1. Only when we get down to the unrealistic figure


4 kg/mm2 the approximation becomes too rude for practical applica-




tion. For practical conditions however the error will not exceed 1°, and

/I

1
0•875
0-75
0.625
0 50
0.375
0.25
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TABLE 2
Error of approximate solution P,

	 X100
T,

co

0
0.8
1.1
2.3
3.5
5

12
10

8
6
5
4

3.33
4 • 0
5.0
6.67
8

10

1.0
1.2
1.5
2.0
2-4
3.0

it is still less for more realistic temperature distributions than have been
assumed in this analysis. This means that the approximation P, satisfies
engineering needs ; not only in the first post-buckling stage but also in the
more advanced range the P-E curves beyond the onset of buckling are
identical in the thermal and the isothermal case.

1.0

be

—

b

0.8

0.6

0.4


0.2

0
0 0,2 0,4 0,6 0,8 1,0

fC b1/ 2

"E
FIG. 4. Effective width  be  for simply supported and restrained panels.
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4.4. Post-buchling Behaviour of Plates with Restrained Edt,,es

The analysis considered so far concerns the simply supported plate. I n
the case of restrained edges the deflections in the edge regions are smaller.
This reduces the effect of temperature gradients in the edge regions on
the phenomenon of buckling and consequently likewise on post-buckling

behaviour. I lence the procedure for establishing the post-buckling

characteristics of simply supported panels under thermal loads is with
still better accuracy applicable to the case of restrained panels. The
relation between the P-c-curves for the thermal and the isothermal case
is again given by (4.13).

With rigidly restrained edges the functions (a) or (b) for W can be

used. Function (b) is more accurate, since the errors in buckling stress
corresponding to the approximations (a) and (b) are 4.5 and 0.7,,
respectively (l)

.

b

3
(a) W = sinarrylb,  yielding f W2 (y) d ylb =

0
1 1

( b ) 0 y < 6 b : f't - (1 -  cos  37r ylb)
3

1

	

b<y<V, :1/17 =-31  sin (3 7rylb -7r/4)

f W2 (y) d-3-/ = 0.41925

These data allow the distances between the axes of P and  P  and between
the axes of and  E  to be established for any given temperature distribution.

'FABLE 3

Simply supported plate, wave pattern and load (see Figs. 4 and 5)

fl




(0) P T' be P
- (4.18)

Etbe0 Etbeb
Eq.

Etbe

1 1 0 1 1 1 1




1 0.953 0.529 0.910 1.103 0.913 0.913




10.894 0.866 0.789 1.286 0.8010.802
10•8161.291 0.629 1-68 0.6630.665
10-7561.658 0.510 2.19 0.5710.568
10.751 1.690 0.501 2.25 0.5650.561
0.8750-675 1.8680-4144 2.88 0.4950.489
0.750.596 2.060.3358 3.770.4250.420
0.6250.5122.290.2623 5.190.3570-354




0.500-4222.5610.1942 7.600.287 0.285




0.3750.3272.940.1319 12.720.221 0.219




0.25 0.225 3.580.0752 26.1 0.147 0.142




(4.17)
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The P-;curve (Fig. 4) is represented very well, both for simply supported
and restrained edges, by the formula given in ref. 4 (see Table 3)

 tb 6:5

— (1,20 (, 2/5 1,5— 0,65 0,45 . (4.1
E E

The quantity  be  is the "effective width".

4.5 Wave Depth, Wavelength, and Equivalent Stress

As a consequence of the equality of behaviour beyond the onset of
buckling under thermal and isothermal conditions, data on waviness and
stresses caused by buckling established for the isothermal case can be
applied to thermal conditions. Such information is available in ref. 4,
where  flt  and  Llb  have been given for simply supported and rigidly
restrained panels. These data as well as  ß  are given in Fig. 5 and Table 3.

1-;
13

1.0

0.8

0.6

0.4

0.2

0

/

13'

1.

171 1.
3

2

1

0 0.2 0.4 0.6 0.8 1.0

b 1/2

kT.

1 3
-

f3I 3b,
2

t f

X

FIG. 5. Wave depth f, half wavelength L, and width of double curved
edge for simply supported (full lines) and restrained panels (dotted lines).
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The stresses imposed by buckling are not evaluated in ref. 4, but they
can be established on the basis of thc displacement functions  u, y, w.

This will be done here for the case of simply supported panels.
If we put

p= 71- q

the stress components are

in the edge region  0<y<li3b:

ux  E; (€ ±ocT) i; ± X,  sin2  q - X,  cos  2p ± X3sin  p  sin  q

cry/E;= -Y,  cos  2p ±  172 sin  p  sin  q

TIE; = fZ cos p cos q

and in the centre region  H3b<y< (1 -

	

= - (c 067') X, ± X,  sin  p

Cfyfri = ± X3  sin  p  (4.19)

T/EE = O.

The sign ± or + applies to the bending or torsional part of the stresses;
the upper sign refers to the top surface, the lower sign to the lower surface,
the hollow side, of the panel.

The coefficients  X, Y, Z  are functions of the strain ratio -E /€0 and have
been given in Table 4 and Fig. 6. For  E7E0 very close to unity  X3,  172, Z

TABLE 4

Simply supported plate, stress coefficients  (see Figs. 6 and 7)

2
(77,1 /3 X1 X2




171 Y2Y3




1




1 00




0 0 0
0-910 1 0-174 0.026 0-920




0.087 0.874 0-483
0-7891 0.399 0-053 1 -254 0.176 1.113- 0-635
0-62910.675 0.074 1 380 - 0.247 1-111- 0-658
0.510, 1 0-855 0.081 1.328 - 0.269 0.990- 0-602
0-501, 1 0.870 0.081 1 -324 (1.134) 0.270 0.977(0.339) 0-596
0-41440-875 0-898 0-088 1 -246 1-058 0-295 0.9500.318 0-570
0.33580 75 0.921 0.096 1.173 0.983 0.320 0.9180.295 0-547
0.26230.625 0.935 0.104 1 -082 0.901 0.345 0.8760.270 0-516
0•19420 50 0.9500.112 0-9910-8170-372 0.8260-245 0-482
0-13190.375 0.960 0-121 0-901 0-7200.402 0.7630-216 0-438
0.0752 0 25 0.973 0.130 0.743 0.5980.434 0.6650-179 0-378
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and flt change rapidly with F„. Fig. 7 gives for this range these
quantities vs. x=[1—(1 since for x —0 the tangents to the curves
are given by

6 

( 1 — av,z) (1 ± x = 3.297 x

	

Z = — X, = 1.775 x
1 + v (4.20)

(	 8 	 \

	

3 x = 1.691x.

X,  = Y, =

1,3
X3

1,2
X 3 Y2

1.1X

4
1.0

0.9

0.8

0.7
' Z

0.6

0,5

0/4

0.3

Y3

0.2

0,1 X 2

0
0 0.1 0.2 0.3 0,4 0.5 0,6 0,7 0,8 0.9 1. 0

FIG. 6. Stress coefficients for simply supported panels.
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{1 — 1/2]1/ 2

FIG. 7. Stress coefficients for simply supported panels in the primary post-




buckling range.

Since E-E is the stress in the plate when buckling would be prevented
the ratios  ax/E-e,  etc., are the ratios between the stress components in the
buckled plate to the stress in the unbuckled plate at the same longitudinal
strain ;.

If we derive the equivalent stress a„ from the Huber-von Mises-Hencky
yield criterion

	

= {(uX gy)2  gxay  37-2p (4.21)

the allowable compressive strain E follows from the condition that the
maximum of act defined by (4.21) is equal to the yield limit.

u, depends on  e ct7'=—ET(AT)-HT.  Then  aa  and its maximum
depend as well on the temperature distribution. Therefore (4.21) cannot
be evaluated once for all. For any given temperature distribution however
a„  can be estahlished using the formulae (4.19) and (4.21) and the data
given in Figs. 6 and 7 or Table 4.

The situation in the isothermal case gives a useful guide for a conjecture
on the points where the equivalent stress is maximal.

In the case T=0 the points A, B,  C indicated in Fig. 8 have large
stresses.  A(p- q  —0) is the intersection of the nodal line and the edge;
apart from the stress a, the torsional stress is large.  B  and C  (p-7,2;
q=77.12)  are situated on the wave crest at the boundary of the double
curved edge region and the developable centre region, at the hollow side
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A

a_b
2

FIG. 8. Places of maximal equivalent stress.

of the bulge. Due to the discontinuity in the assumed deformation at this
point the stresses in B and C, which are in fact equal, will appear to be
slightly different. The actual stress can be assumed to be the average of
the stresses in B and C at the hollow (lower) side of the plate. This applies
of course only to deformations where /3<1. For ,'Eo<4 the point C does
not exist. For :€0>2 the maximal equivalent stress occurs in A; for

'so<2 B,C is the point with maximal stress.
The addition of temperature gradients changes the stresses ; the stress

decreases in A and increases in B,C. Therefore B,C will be critical in a
larger range of —e/Eo. As far as the vicinity of A is critical it should be taken
into account that the slope of AT close to the edge is large ; this means that
the maximum of a, may be located on the nodal line at some distance
from the edge.

5. POST-BUCKLING BEHAVIOUR UNDER


SIMULTANEOUS COMPRESSION AND SHEAR

In comparison with the isothermal case, the situation in the thermal case
differs in the rapid change of the longitudinal stress in the edge region.
The "correction method" for establishing buckling loads has been based
on the idea that the stress az in the region close to the edge does not affect
the stability significantly, due to the smallness of (aw/ax)2 in this region.
This suggested that in general the wave pattern would undergo a negligible
change through the addition of thermal stresses, as appeared to be true in
the case of longitudinally compressed panels.

This idea has its importance as well with respect to the post-buckling
problem, as has been confirmed by the investigation on the longitudinally
compressed plate in Section 4.

14
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I f then at finite deflections the wave patterns in the thermal and in the
isothermal case are equal, the stress increments beyond buckling following
from incremental edge displacements beyond those at the onset of buckling
are unaffected by thermal conditions. The incremental edge loads are the
resultants of the incremental. stresses. Therefore the load increment
beyond buckling load is independent of the thermal state of the plate and
data on post-buckling behaviour for isothermal conditions are valid as
well for thermal conditions.

The buckling load in the thermal case can be established by means of
Eq. (2.10). The load increment beyond buckling load can be taken from
the solution for the isothermal case applying the mechanical properties
of the material at the ambient temperature level.

Information on post-buckling behaviour of simply supported panels
under simultaneous longitudinal and lateral compression and shear is
available in refs. 8 and 9.

6. CONCLUSIONS

Non-uniformity of longitudinal stress due to temperature gradients in
the region close to the edge has a negligible effect on the wave pattern.
Hence the buckling mode of uniformly stressed plates is a very good
approximation for the buckling mode under thermal stresses. This yields
a straightforward method for establishing the buckling load in the thermal
case if the solution for uniform stresses is available (Eq. 2.10).

Post-buckling behaviour of thermally loaded and longitudinally
compressed panels proves to be negligibly different from post-buckling
behaviour in the isothermal case for the practical range of ratios between
thermal strain (cen and buckling strain. This suggests that for post-
buckling behaviour also, the wave pattern is negligibly affected by thermal
strain. This approach yields that the relation between load increments
and edge displacement increments beyond the onset of buckling is identical
for thermal and isothermal conditions.

Concerning thermally loaded longitudinally compressed panels, data
are given on the relation between compressive load and edge strain, on
wave depth, wavelength and stresses as a function of edge strain.

For the case of thermally loaded panels under simultaneous longitudinal
and lateral compression and shear use can be made of available information
on post-buckling behaviour in the isothermal case.
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DISCUSSION

N. J. HOFF*: The writer agrees with Professor van der Neut's statement in his
excellent paper that a remarkable feature of the thermal buckling problem is that
the deflected shape differs only slightly from the sinusoidal form even though the
stress distribution is markedly non-uniform. This fact can be brought out more
completely if the differential equation, Eq. 2.1, is solved rigorously by the inverse
method.

Let it be assumed that fry and r are identically zero. The solution can be written
as

zv = Y sin (7r,c1L)

where Y is a function of y only. Substitution yields the ordinary differential
equation

	

BO' — 2(ir L)2 Y " (ir:L )1 — o xt (Tr,IL)2Y

If the deflected shape is taken as

Y = A[sin (rrylb) — p sin (3rrylb)]

the ordinary differential equation is identically satisfied if

	

rr2E  	 t) 2F(y)
crx =

12(1 — e2) L
where

F(A =
sin (rrylb) — p sin (37Tylb)

When p — 0, this expression reduces to

crx
ir2E 	 (t)=

if the plate is square, that is if Llb = 1. Other assumptions for p yield the curves
given in Fig. 9.

* I lead, Division of Aeronautical Engineering, Stanford University, Conn., U.S.A.

[(L1b)2 + 112sin (rrylb) — p[(3I, b)2 + 112sin (3iry/b)

3(1 — e2) L
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VALUES OF F(y)
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F G . 9. Critical stress distributions.

It can be seen that remarkably small deviations from the sinusoidal shape lead
to very large variations in the critical stress distribution. This explains the success
of the approximate analyses carried out by the author.

COMPRESSION




